Clustering-based Source-aware Assessment of True Robustness for Learning Models
نویسندگان
چکیده
We introduce a novel validation framework to measure the true robustness of learning models for real-world applications by creating sourceinclusive and source-exclusive partitions in a dataset via clustering. We develop a robustness metric derived from source-aware lower and upper bounds of model accuracy even when data source labels are not readily available. We clearly demonstrate that even on a well-explored dataset like MNIST, challenging training scenarios can be constructed under the proposed assessment framework for two separate yet equally important applications: i) more rigorous learning model comparison and ii) dataset adequacy evaluation. In addition, our findings not only promise a more complete identification of trade-offs between model complexity, accuracy and robustness but can also help researchers optimize their efforts in data collection by identifying the less robust and more challenging class labels.
منابع مشابه
Testing Several Rival Models Using the Extension of Vuong\'s Test and Quasi Clustering
The two main goals in model selection are firstly introducing an approach to test homogeneity of several rival models and secondly selecting a set of reasonable models or estimating the best rival model to the true one. In this paper we extend Vuong's method for several models to cluster them. Based on the working paper of Katayama $(2008)$, we propose an approach to test whether rival models h...
متن کاملEIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks
Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...
متن کاملAsthma Control Level Assessment by Moving from the Current Reactive Care Models into a Preventive Approach based on Fuzzy Clustering and Classification Algorithms
Background and Aim: Asthma is a common and chronic disease of respiratory tracts. The best way to treat Asthma is to control it. Experts of this field suggest the continues monitoring on Asthma symptoms and adjustment of self-care plan with offering the preventive treatment program to have desired control over Asthma. Presenting these plans by the physician is set based on the control level in ...
متن کاملAPPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES
The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics...
متن کاملEvaluating E-Learning Maturity from the viewpoints of Medical Sciences Students
Introduction: Digitalization of education is considered as a major reforming in higher education. E-learning programs are increasingly seen as a way to reform in medical sciences education, giving access to ongoing learning and training without any time or geographical barriers. Technology is a powerful tool for effective teaching and deep learning. Therefore, the aim of this paper is evalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1704.00158 شماره
صفحات -
تاریخ انتشار 2017